Table of comtents

Part I : Presentation of the research of the laboratory	2
Marine Natural Products Chemistry	2
Tropical Island	4
Part II : Introduction to molecular modelling	6
Brief history of Molecular Modelling	6
Calculation of energy	6
Starting points for molecular modelling	9
Where do we get physical data to start modelling?	9
How can we find the smallest energy conformation of a molecule ?	10
Molecular Dynamics	13
How can quantum mechanics help us ?	14
Some applications	14
Part III : Some words about the software I used for my project	15
MacroModel	15
Molden	15
X Cluster	17
Molmol	17
Part IV : My project	18
Conformational search	18
Conformation clustering search	19
Calculation of RMSD	19
Conversion of PDB files	21
The overlap with molmol	31
Thanks	32
Appendices	33

Part I : Presentation of the research of the laboratory

Marine Natural Products Chemistry

Pharmacognosy using Marine Invertebrates and Cyanobacteria

Natural products are traditionally the cornerstone of drug discovery. Despite advances in synthetic chemistry and in the understanding of the mechanisms of drug action, the ideal of rational drug design is still a long way off. Natural product discovery from new sources will continue to be essential to provide novel lead compounds which the synthetic chemist can modify. Studies performed at the National Cancer Institute in the USA have shown that marine organisms represent a significant source of biologically active lead compounds.

We are looking at the isolation of novel drug candidates from soft-bodied marine organisms collected in UK and Indo-Pacific waters. The isolation of bioactive compounds from the crude organism extracts is guided by their biological activity. Once a pure compound is isolated, its structure is defined using one and two dimensional nuclear magnetic resonance methods as well as advanced mass spectrometric techniques.

Chemical Ecology

As well as the discovery of biologically active natural products the laboratory is also interested in the role of these compounds in nature. We are currently investigating production of the microcystin toxins by cyanobacteria (blue green algae) of the genus Microcystis.5,10 We hope to discover the chemical cues that stimulate the production of these toxins.

Marine Bioinorganic Chemistry

The low concentrations of metal ions in the marine environment compared to the terrestrial suggests that marine organisms may have evolved unique mechanisms for the uptake of biologically important metal ions from the ocean and their subsequent storage and utilisation. The laboratory work focuses on the discovery of novel ionophores, the organic compounds responsible for metal uptake and trans-membrane ion transport, from marine organisms. Once discovered the modes of action of these compounds are studied by using various physical methods as well as molecular modeling studies.

Structural Organic Chemistry

The laboratory is also interested on the structure determination by spectroscopic methods, and the use of computer assisted structure elucidation. The laboratory is working on the solution state structure determination of small cyclic peptides.

Completed Projects

Toxic Principles in Saliva of the Octopus Eledone cirrhosa

This project is run in collaboration with Professor Peter Boyle, Department of Zoology, University of Aberdeen.

During this research the paralytic toxin from saliva of the northern octopus Eledone cirrhosa was isolated and partially characterised. Methodology was developed for acquiring the saliva and isolation of the active constituent using HPLC and a locust bioassay. We are currently scaling up the isolation process to obtain enough material for full structure elucidation.

Isolation of Divalent Metal Complexing Agents from Marine Invertebrates. During this we isolated marine invertebrate metabolites complexed to divalent metal ions (Cu2+, Zn2+), and used spectroscopic methods (CD, MS, NMR) to determine their physical properties. The main focus was on modified cyclic octapeptide metabolites from the seasquirt Lissoclinum patella. We determined binding constants and binding selectivity using circular dichroism spectroscopy and mass spectrometry. The binding environment has been studied using NOE restrained molecular dynamics studies.

Detoxification of Electrophiles by E. Coli

This project was run in collaboration with Prof Ian Booth, Department of Molecular and Cell Biology, Aberdeen University. We determined the structure and production requirements of two electrophiles which were detoxified by E. coli. The work involved microbiological and molecular biological methods as well as separation technology and spectroscopic methods.

Tropical Island

Cyanobacterial Chemical Ecology

This project is run in collaboration with Dr Linda Lawton, Department of Applied Sciences, Robert Gordon University, Aberdeen. The chief aim of this project is to elucidate whether toxin production in freshwater cyanobacteria affords a competitive advantage to the producer organism and to identify if known toxins and/or other previously unidentified compounds associated with these species exhibit allelopathic properties. Initial mixed culture experiments have shown that toxin production is increased when a toxic strain is mixed with a non toxic strain. Spent medium experiments indicate that the effect is large and reproducible. We are currently engaged in the isolation of the chemical cue involved in eliciting the toxin production.

Molecular Self-Assembly of Marine Toxins

The main aim of the proposed work is determine the degree of supramolecular structuring that occurs in complexes of synthetic alkylpyridinium salt (APS) oligomers with dianions. This will be achieved by the synthesis of 1,2 and 1,3 alkylpyridinium salt oligomers with differing

connecting chains. We will study the structuring that has occurred using Xray crystallography where possible, and complement this with circular dichroism studies and nuclear Overhauser effect NMR spectroscopy. We are currently developing solid phase methodology for the synthesis of 1,3-APS oligomers.

Marine Invertebrates as Sources of Novel Pharmacophores

Exploration of sponges of various genera collected from Fijian waters for novel bioactive compounds. Bioassay guided isolation of novel metabolites using antitumour screens (performed by the Paterson Institute for Cancer Research in Manchester and the Ford Cancer Centre in Detroit). Application of advanced spectroscopic methodology to determine the structure of the bioactive metabolites. We isolated and identified a family of chitinase inhibitors which is currently being tested by Zeneca Agrochemicals in insect and plant fungal screens.

Other compounds include a family of cytotoxic agents from a previously uninvestigated sponge.

Solid supported Cu(II) fluorosensors for environmental and medical applications

An important tool for the study of copper in living systems is the use of fluorescent chemical sensor molecules (chemosensors) which can determine the concentration of copper in living systems. We have discovered that some marine natural products might be suitable for modification to generate a purely copper selective chemosensor by attaching a fluorescent group. We intend to chemically synthesise such a fluorescent copper chemosensor and immobilise it on a solid substrate. This will make it useful for the determination of copper concentrations for medical and environmental applications.

Part II : Introduction to molecular modelling

Brief history of Molecular Modelling

1860	Structural stereochemistry first considered (structural formulae used)			
1874	Tetrahedral carbon doscovered by van't Hoff			
1953	Barton introduces conformational analysis			
1958	3D structure of myoglogin solved by X-ray crystallography (only 300 organics solved at this time).			
1959	Drieding stick models developed			
1965	CPK space-filling models developed			
1970s	Computer models began to be used			

Calculation of energy

The goal of modelisation is to know the structure which a molecule can take in the space. The themodynamic laws tell that the most stable conformation of the molecule is the conformation who have the lowest energy. If fact, we should calculate the free enthalpy of a molecule but in fact we will calculate the energy of the molecule U.

G function tell us how a conformation is stable compared to another, il G<0, it means that the other conformation is more stable but it doesn't mean that the transformation will be quick, it's just mean the transformation is possible.

We have in fact :

G=H-TS

If we consider that entropy is quite nil, we have

G#H

and H=U+PV, if we have no exterior pressure, we can write

G#H#U

In fact, if we want to know the free enthalpy of a conformation, we just have to calculate intern energy.

How calculate the energy of a molecule ?

Considering the intern energy of a molecule, we can divide it in several parts : energy of bonds, energy of angles, energy of torsion, Van Der Waals energy, energy of charges and so on.

• Bond energy

The easiest way to have a view of bond energy is to treat a bond as a spring. We have a minimum energy at the equilibrium position, when the bond is pulled or push, the energy increase.

In we are near the equilibrium position, we can calculate the bond energy by the formula :

$E = k(1-l_0)^2$

E : bond energy
k : constant of the spring
l₀ : length of the bond at the equilibrium position
l : length of the bond

We can know the l_0 value using X-ray spectroscopy and k value using infrared spectroscopy.

• Bond angle energy

We choose a similar model as bond energy model. In the easiest way is to use the formula :

 $\mathbf{E} = \mathbf{k}_{\theta} (\theta - \theta_0)^2$

E : bond angle energy k_{θ} : constant of angle spring θ : bond angle θ_{0} : bond angle equilibrium

Of course, we can use this formula only if we near of the equilibrium but in fact the bond angle don't vary very much.

• Van Der Waals interactions

Atoms can't be too close each other. Atoms behave as if they were hard spheres. The radius of atoms can be estimated with X-ray spectroscopy. We can estimate the energy of repulsion of two atom by various term : we can use for example an exponential term or a $1/r^{12}$ term.

• Torsion angle energy

Molecules can rotate around single bonds, and there is energy barrier to such rotation. For example rotating around C-C of ethane require energy to allow ethane to be in transition state where hydrogen atoms are close each other, and this energy is the Van Der Waals repulsion of hydrogen atoms.

It's difficult to determine an expression of torsion energy angle, and this expression is specific of a kind of molecules. A expression who gives good results for ethane will give very bad results for cyclohexane. Truncated Fourrier series are often used.

• Improper torsion

Torsion angle are also used to keep sp^2 atoms flats. Improper torsion term is introduced to show the disortion from planarity of double bonds.

• Charge-charge interactions

It's necessary to introduce charge-charge interaction only with polarised molecules. For example a carbonyl group's electron density is polarised towards the oxygen and the energy of interaction will be different if they are aligned or opposed. Aligning the groups brings two partial negative charges close to each other, which is unfavorable compared with the opposite arrangement which pairs partial positive and partial negative charges.

The easiest way to calculate interactions is to give a charge to every atoms and then calculate the energy using the Coulomb's laws.

Starting points for molecular modelling

Molecular modelling is usually started through three main methods:

- Building using standard geometries especially bond lengths and bond angles
- Building using fragments which are known to have sensible geometries these have usually been corrected by some
- Method of "optimisation"
- Building using data obtained from physical experiment usually X-ray crystallography, neutron diffraction or structure deduced from nuclear magnetic resonance (NMR) data

Where do we get physical data to start modelling?

• X-ray Crystallographic Data

This is the primary source of data, for both small molecules and for large molecules, giving the structure of a compound in the solid state. Positions of heavy atoms are located more accurately than lighter atoms. Hydrogen atom positions are frequently in calculated positions rather than observed positions.

• Neutron Diffraction Crystallographic Data

This method also gives the structure of the molecule in the solid state. This method is usually more accurate than X-ray crystallography and gives accurate positions for light atoms such as hydrogen.

• Nuclear Magnetic Resonance Spectroscopy

This method is capable of giving information about the solution phase structure. However this information is generally ncomplete and needs extra information from other sources to give a complete picture. This method is becoming considerably ore important in the last few years as a method for determining the structure of medium and large bio-molecules.

• Other techniques

There are several other less frequently techniques, such as microwave spectroscopy, for determining molecular structure but hese are not used routinely as starting information for molecular modelling.

How can we find the smallest energy conformation of a molecule ?

Optimization is the term for the mathematical process whereby the structure obtained by a round of calculational processes is ompared to a previous structure. The structure is modified to make it more consistent with the parameter information within he program. Various mathematical procedures are used to determine how the geometry will change from one step to the next.

The most common methods are:

- "steepest descent"
- Newton-Raphson method
- simplex method
- Fletcher-Powell method
- or a combination of methods (usually two)

Combining methods is done due to the varying methods being more efficient in different circumstances, e.g. steepest descent is easiest to program and understand but is very slow to converge when on a shallow potential energy surface. However it is excellent at correcting major abnormalities at the start of a calculation. The program keeps altering the geometry until a specified cutoff value is reached the molecule is said to be optimized. The specified cutoff value is termed the convergence criterion. A common convergence criterion is that the change in energy, between the last structure calculated and the second last structure calculated, of less than .05 kJoules. Generally the convergence criterion is based on measuring changes in the energy or changes in the geometry or both.

Force fields used for optimization are essentially divided into two classes:

- The first is for use with small molecules with all atoms including hydrogens being included in the calculation. This is an "all atom" approach.
- For large biological molecules, e.g. proteins and nucleic acids, an "essential atoms only" approach is used. Here the majority of hydrogen atoms are removed from the structure in order to decrease computational time. The only hydrogen's maintained are those connected to heteroatoms, the "essential hydrogens". To compensate for this carbons have an expanded van der Waals radius which accommodates the missing hydrogens. This method is known as the "united atom" approach.

The best-known molecular mechanics package for small molecules is MM2 (U. Burkert and N. L. Allinger, "Molecular Mechanics", American Chemical Society, Washington D. C., 1982).

For large molecules the best known program is AMBER (P. W. Weiner and P. A. Kollman, J. Comput. Chem., 1981, 2, 287-303). Two other programs CHARMM and GROMOS are also widely used.

When optimizing "ordinary" organic molecules there are usually no problems encountered obtaining adequate parameters as these will have been invented and tested previously. HOWEVER the most common problem encountered using molecular mechanics is the error message "no parameters for XXXX interaction". Therefore parameter invention is necessary.

This is relatively easy for all parameters except torsion angle parameters (using consideration of hybridization state, commonsense and analogy).

When a united atom force field is being used it is often necessary to include terms for improper torsion angles (a torsion angle where the atoms are not sequentially bonded to each other) to maintain the correct stereochemistry and sometimes to maintain planarity. If this is not done chirality can be changed.

Molecular mechanics calculations, in general, give good geometries though care needs to be taken with strained molecules.

Conformational information can be easily obtained by comparing the difference in energy for different conformations of the same molecule. This may involve "constraining" some particular feature of the geometry, e.g. a torsion angle to a set value to be retained during optimization.

The major problem with molecular mechanics calculations is that they converge on the nearest local minimum which is not necessarily the global minimum.

If, for example, the potential energy surface is depicted as a two dimensional surface:

reaction coordinate

then an optimization starting at points A or B will converge on local minima and not the global minimum. An optimization starting with at C will optimize to the global minimum. When there are only a few rotatable torsion angles (realistically less than 6) then it is possible to systematically rotate the torsion angles and locate the global minimum. When there are multiple torsion angles then an unoptimized structure is usually subjected to Molecular Dynamics to find low energy conformations by randomly sampling conformational space.

Molecular Dynamics

This method uses the Newtonian equations of motion, a potential energy function and associated force field to follow the displacement of atoms in a molecule over a certain period of time, at a certain temperature and a certain pressure. Calculations of motion are done at discrete and small time intervals and a velocity calculated on each atom position which in turn is used to calculate the acceleration for the next step. Starting velocities can be calculated at random (necessary when starting at 0 Kelvin where the kinetic energy is 0) or by scaling the initial forces on the atoms. Simulations can also be run with differing temperatures to obtain different families of conformers. At higher temperatures more conformers are possible and it becomes feasible to cross energy barriers.

When doing calculations on biological molecules it is becoming more frequent to do the calculations in the presence of solvent (usually water!!). However, this brings further complications due to two main problems. The first being increased CPU time due to the larger number of atoms. The second is that the water molecules surrounding the molecule tend to drift away from the molecule of interest and get "lost" from the calculation if only a certain area of space is being monitored as is usually the case.

This causes nasty "edge effects". There is one method currently used to get around this problem. That is to place your molecule surrounded in water in a box of a specific size and then to surround that box with an image of itself in all directions. The solute in the box of interest only interacts with its nearest neighbour images. Since each box is an image of the other, then when a molecule leaves a box its image enters from the opposite box and replaces it so that there is conservation of the total number of molecules and atoms in the box. This are known as periodic boundary conditions.

Simulated annealing is a special type of dynamics. The molecule is heated and then cooled very slowly so that conformational changes taking place will lead to the global minimum being located.

Related to molecular dynamics are Monte Carlo methods which randomly move to a new geometry/conformation. If it is lower or close in energy it is accepted if not an entirely new conformation is generated. This process is continued until a set of

low energy conformers has been generated a certain number of times

How can quantum mechanics help us ?

Some applications

Part III : Some words about the software I used for my project

MacroModel

MacroModel is a piece of software who is can used to draw molecules, to calculate the energy of a given conformation, and find the minimum energy by various methods, such Monte-Carlo. Morever, Macromodel can give length, angle and angle torsion of a given conformation. It also can calculate the difference between two conformation after overlaping. I learnt Macromodel during the two first weeks of my project. I used Macromodel to solve easy problems such difference in energy between chair and boats cyclohexane conformation, difference between axial and equatorial position of several substituants, and I also used MacroModel for organic chemestry reactivity.

Molden

Molden is an interface to GAMESS, a program who uses quantics mechanics methods.

I used Molden to do a dihedral drive of C-S bond of cysteine.

Molden doesn't used cartesian coordonates, it uses Z-matrics format instead.

Description of Z-matrics format

It is sometimes convenient to describe a molecule in terms of internal coordinates, using a Z-matrix, rather than using Cartesian Coordinates. This means that the position of each atom is expressed in terms of the positions of atoms which have already been defined. Thus a typical line in a Z-matrix description of a molecule looks like:

Atom Type r atom 1θ	atom 2 ϕ
-----------------------------	---------------

The first item is the sort of atom that is being described. The second, r, is the distance from this new atom to another atom *atom 1*. This atom must have already been described earlier in the Z-matrix. There is now an angle, θ , which is the angle created by the new atom, *atom 1* and *atom 2*. A second angle, ϕ , describes the torsion angle between the new atom and *atoms 1—3* (Figure 1).

This description depends on there being three atoms that are already defined, so the beginning of the Z-matrix is slightly different. The first atom is usually just given an atom type, and no information about its position. The second atom will be defined simply by its distance from the first atom. The third by its angle. For example, hydrogen peroxide (HOOH), is a simple four-atom molecule whose Z-matrix (minimised by AM1) is as follows:

H1 O1 1.1 H1 O2 1.5 O2 107.0 H1 H2 1.1 O2 107.0 O1 100.0 H1

An internal coordinate description of a molecule has the feature that it is not necessary to define a position or an orientation for the molecule, since all of the atoms are defined relative to each other. It is also possible to rotate around torsion angles, by making simple changes to the Z-matrix. For example, the H-O-O-H torsion angle in the above example is set to 100.0° , but only this single parameter need be altered to adjust the angle. In a description of the molecule using cartesian coordinates, the x, y and z coordinates of at least one of the atoms would need to be altered, which would be very much less convenient.

Dihedral drive of cysteine

To do the dihedral drive, I had to keep the C-S torsion angle as a constant (in the beginning a 210 degrees) and let all the other value (all length bond, all angle bonds, all torsion but C-S torsion) variable. So Molden calculate the values to have the minimal energy. And after I would do the same things but use 240 degrees insted 210, after 300 after 330 ... every 30 degrees. At the

end, I could have the enedy profile of cysteine if I turn the two part of the cysteine around C-S bond.

You can have some trouble if you have in your molecule 180 degrees torsion angle bond, because the program consider angle from -180 to 180 degrees and if you a little more than 180 degrees, it would be -179.999... degrees and because of this thing, if you have 180 degrees torsion angle, the program may crash. As I had a aromatic cycle, it was impossible to me to avoid 180 degrees torsion angle so I could't make the energy profile.

X Cluster

X Cluster is program designed to compare conformations each other and to tell you how many conformations there are of each shape.

I used this program after I did Monte Carlo conformation searching

Molmol

Molmol is a molecular graphics program for displaying, analysing, and manipulating the three-dimensional structure of biological macromolecules, with special emphasis on the study of protein or DNA structures determined by NMR. Molmol has a graphical user interface with menus, dialogue boxes, and on-line help. The display possibilities include, besides the type of representations found generally in other molecular graphics programs, novel schematic molecular representations. All types of

representations can be combined in the same display. Structures can be manipulated by adding and removing atoms and bonds and by interactive rotation about dihedral angles. Special efforts were made to allow for appropiate display and analysis of sets of (typically 20-40) conformers that are conventionally used to represent the result of a NMR structure determination. Thus, Molmol has functions for superimposing sets of conformers, calculating RMSD values, identifying hydrogen bonds, checking and displaying violations of NMR constraints, and listing short proton-proton distances.

Part IV : My project

Marines sponges contains peptides who they have some anti-cancer properties. All of this peptides are cyclics, they have like a dozen of aminoacids and all of them are many proline amino-acids. The goal of my project was to compare these molecules each other, in fact I had nine molecules to compare.

Conformational search

In the first part of my project, I searched the conformations of the nine peptides of the global minimum and local minimums who didn't have more than 50 kJ more than global minimum.

I used for that Monte-Carlo algorithm. I asked to the computer to try 5000 molecules. Of course, most of them (don't forget it's semi-random process) was rejected (by energy, by constrainst, by chirallity change). It took one day of calculation per molecule.

I did conformation searching using implicit hydrogens, i.e., I didn't put missing protons to the carbons. There only were hydrogens on hydroxyl and amino groups. I used AMBER force field.

Molecule	number of unique confor- mations	Numb of low below kcal/n	Number of conformations found of lowser uner a given energy below the global minimum (in kcal/mol)				Energy of the global minum (kcal)
		1	2	3	5	10	
Α	666	10	13	22	54	435	-537.26
B	906	1	8	17	70	570	-394.73
С	735	4	8	30	121	540	-454.17

Results

D	858	1	4	21	117	658	-462.03
E	799	8	34	68	177	646	-576.69
F	1110	11	32	70	224	911	-299.31
G	1179	5	22	59	218	960	-245.59
Н	1260	27	86	195	564	1189	-338.45
P8	987	10	29	74	220	789	-529.08

Conformation clustering search

Once the conformation search was finish, I had to see how the conformations found ressamble each other, i.e how many stable conformation the molecule has.

For that kind of things, I used X cluster, described in third part of this report. For each structure, I looked for highest level cluster. After that I selected this cluster, I could see the main conformation(s).

I saved the cluster structure file and this file can be open by Monte-Carlo.

Calculation of RMSD

At this moment, I determined the main conformation(s) of my structures. If there was two main conformations, I only took the first.

I was ready for comparison, but as the nine molecules haven't the same structure, it was ridiculous the compare some of them. Don't forget that we are interested by proline properties.

So proline amino acid will be called P and other amino acid will be called X.

I only represent the part of the molecule where there is not more than two X-amino-acid between two proline amino-acid.

Molecule	Structure
А	PPXP
В	PPXXP

C	PXPXXP
D	PXXPXXP
E	PXPXP
F	PXPXP
G	PXPXP
Н	PXPXP
P8	PPXXPP

As the E, F, G, H as the same PXPXP sequence, I decided to compare this four molecules each other.

To do this, I used the SUPerposition Atom function of Macromodel. In a first time, I only overlap nitrogen of amino groups of proline amino-acids.

This is the results (in A)

	Ε		_
F	1.046	F	
G	0.747	0.646	G
Н	0.422	0.983	1.470

You can see that only E and G, E and H and F and H are close enough. So, I carried on the comparisons with these pairs of compunds.

I had to do a better overlap to have a better comparison. I had to overlap all atoms of proline and the NH-CH-CO part of X amino acids where are between two prolines.

It was very very difficult to me to use Macromodel to overlap a great number of atoms because if you make a mistake during your selection, you had to restart the selection from the beginning. It's quiet easy to do overlap when you have only three atoms (e.g. three nitrogens) but as I had in that case many atoms, it was quite impossible.

To do this work, I used Molmol.

There is only one kind of file format that both Macromodel and Molmol reconize : it's PDB file format. Unfortunatelly, there are a few differences between Macromodel PDB files and Molmol PDB files format.

Conversion of PDB files

So, I had to make a program to do the conversion. I chose for that QBasic.

The thirst to in this case is to compare the two format files. (The beginning of this files are given in appendice)

As you can see it, the are a few differences (this differences are only in the lines beginnig with HETATM in Macromodel PDB file) :

Columns	Macromodel PDB file	MolMol PDB file	
1-6	"HEDATM" string	"ATOM " string	
14-16	Type of atom followed by a	The atom name according to	
	atom number	IUPAC notation	
18-20	"UNK" string meaning	The amino	
	unknow		
22	A position letter of amino	Nothing	
	acid in the molecule		
26	Always "1"	A position number amino	
		acid in the molecule	

The description of ATOM format was a good help to find meaning of the differents coloums.

These is the description :

Colums	Data type	Field	Definition
1 - 6	Record name	"ATOM "	
7 - 11	Integer	serial	Atom serial number.
13 - 16	Atom	name	Atom name.
17	Character	altLoc	Alternate location indicator.
18 - 20	Residue name	resName	Residue name.
22	Character	chainID	Chain identifier.
23 - 26	Integer	resSeq	Residue sequence number.
27	Achar	iCode	Code for insertion of residues.

31 - 38	Real(8.3)	Х	Orthogonal coordinates for X in
			Angstroms.
39 - 46	Real(8.3)	у	Orthogonal coordinates for Y in
			Angstroms.
47 - 54	Real(8.3)	Z	Orthogonal coordinates for Z in
			Angstroms.
55 - 60	Real(6.2)	occupancy	Occupancy.
61 - 66	Real(6.2)	temp	Temperature factor.
		Factor	
73 - 76	LString(4)	segID	Segment identifier, left-justified.
77 - 78	LString(2)	element	Element symbol, right-justified.
79 - 80	LString(2)	charge	Charge on the atom.

I hadn't yet informations about atoms names and residue names (residue name is the three-letter code of an amino acid).

I easely found the residue name in the appendice 3 of the PDB Guide.

The residue name are given in appendice.

For each amino acid, we have in atom name coloumn the kind of atom (C, O, N, H) and its place in the chain. The atom names for each amino acid are given in appendice.

In fact, when I made the program, I didn't find this table yet, I used data contained in the PDB example file of Molmol. Unfortunatelly, this file didn't contain any tryptophan data. (The usefull information I was needed is also given in appendice).

Once I understood the meaning of columns and the part who must be changed, I could write the program.

This is the program :

REM Program of conversion of PDB files REM ------REM input file : PDB Macromodel file REM output file : PDB Molmol file

22

REM -----------DIM n (7) 'array of three-letter code amino-acids DIM n(7) 'array of number of atoms for each atom '(implicit hydrogen rule) DIM d\$(7, 20) 'array of atoms names for each 'aminoacid 'filling of arrays FOR i = 1 TO 7 'i is the amino-acid number READ n\$(i) READ n(i) FOR j = 1 TO n(i)READ d\$(i, j) NEXT j, i OPEN "i", #1, "molg" OPEN "o", #2, "molg2" FOR i = 1 TO 3 'let the compund description 'unchanged LINE INPUT #1, a\$ PRINT #2, a\$ NEXT i READ n 'read amino-acid number of the molecule FOR i = 1 TO n READ aa 'read amino acid number FOR j = 1 TO n(aa) LINE INPUT #1, a\$ 'read amino ac REM fields of line beginnig by HEDATM REM colomns 1-6 : HEDATM keyword must be changed REM in ATOM

```
REM colomns 14-16 : atom name
REM colomns 18-20 : three-letter amino-acid code
REM colomn 22 : it's a letter of the order amino
REM acid in the molecule and must be deleted
REM colomn 26 : order in amino acid (always 1 in
PDB Macromodel file)
MID$(a$, 1) = "ATOM "
MID$ (a$, 14) = d$ (aa, j)
MID$(a$, 18) = n$(aa)
MID$(a$, 22) = " "
MID$(a$, 25) = STR$(i) 'don't forget the space
PRINT #2, a$ 'write the line in the output file
NEXT j, i
   'let the end of file unchanged
DO
LINE INPUT #1, a$
PRINT #2, a$
LOOP UNTIL EOF(1)
CLOSE
'atom names data for each amino acid
DATA GLU
DATA 10, "N ", "CA ", "C ", "O ", "CB ", "CG "
DATA "CD ", "OE1", "OE2", "H "
DATA ILE
DATA 9, "N ", "CA ", "C ", "O "
DATA "CB ", "CG1", "CG2", "CD1", "H "
DATA LEU
DATA 9, "N ", "CA ", "C ", "O ", "CB "
DATA "CG ", "CD1", "CD2", "H "
DATA PHE
```

```
24
```

DATA 12, "N ", "CA ", "C ", "O ", "CB " DATA "CG ", "CD1", "CD2", "CE1 ", "CE2 ", "CZ ", "H " DATA PRO DATA 7, "CD ", "N ", "CA ", "C ", "O ", "CB ", "CG " DATA TYR DATA 14,"N ","CA ","C ","O ","CB " DATA "CG ", "CD1", "CD2", "CE1", "CE2" DATA "CZ ", "OH ", "HH ", "H " DATA TRP DATA 14, "N ", "CA ", "C ", "O ", "CB ", "CG " DATA "CD1", "CD2", "CE2", "CE3" DATA "CZ2", "CZ3", "CH2", "H REM molecule description REM 1. glutamic acid REM 2. isoleucine REM 3. leucine REM 4. phenylalanine REM 5. proline REM 6. tyrosine REM 7. tryptophan REM this is amino-acid chain of the REM molecule previoused by the REM number of amino acid in the REM molecule. REM e.g. for Pro-Tyr-Iso REM you put REM data 4,5,6,2

DATA 7,5,4,5,2,2,5,6

End of the program

Some explanations

All informations about the instructions are given in appendice.

For the number of the columns, I used the information given below and I used a text editior (EDIT supplied with DOS system) to exactly know the colomns number (I viewed the PDB Molmol example file).

To replace one part of string by another, I used MID\$ instruction. It's very powerfull but only works if the number of characters remains unchanged.

The program assumed that the input file is really made by Macromodel. In that kind of file, there exactly three lines of compound description before atom description.

In the first part, the program reads all amino acid data.

The program reads the three first lines of the input file and puts them in the output file without change.

Then, the program reads the number of amino acid.

After, there is a loop for each amino acid (the number of repetion of the loop is the number of amino acids in the molecule)

There is another loop for each atom of each amino acid

The program reads the line of input file, makes the changes using MID\$ instruction (all the changes mades are written in REM lines in the program) ant put them in the output file.

End of the loops here

In the end, the program reads the last lines of the input files and puts them output file without changes (it's the bonds data).

Note that the program assumes that the peptid is cyclic. It's why we only consider amino acid in with neither amino nor carboxylic group.

The PDB file made with this program should work, in fact Molmol read it. But Molmol can't compare properly two molecules who they don't have the same number of amino acid and who the wmino acid chian (remind that all molecules are cyclic and you start the description with whatever amino acid you want) start with a random amino aicid. To compare two peptides, I had to write another program in order to the description begin with PXPXP amino acid chain. (With molmol we can compare two residue of the same number).

That's the program :

```
REM program for modifing atom order
REM (we want PXPXP first, with first P
REM number one)
REM ------
REM input file : initial Molmol PDB file
REM output file : Molmol file with PXPXP first
DIM n(7) 'array of number of atom
       'for each amino acid
DIM naa(100) 'array for know where the new atom
           'is when you know old atom place
'filling of array
FOR i = 1 TO 7
READ n(i)
NEXT i
OPEN "i", #1, "molg3"
OPEN "o", #2, "molg4"
FOR i = 1 TO 3 'let the compound description
             'unchanged
LINE INPUT #1, a$
PRINT #2, a$
NEXT i
        'read the number of amino acid
READ n
```

'of the molecule na = 0 'counter for atoms, (in fact the number of lines written) na : new atom FOR i = 1 TO n 'read amino acid number (see the READ aa 'table at the end of the program) FOR j = 1 TO n(aa) LINE INPUT #1, a\$ REM uselful information in PDB file REM in ATOM section REM colonnes 10-11 : counter of atom REM colonne 26 : position of amino acid in the molecule na = na + 1'increase the counter of atoms naa = VAL(MID\$(a\$, 10, 2))'put the value of old 'atom in naa variable naa(naa) = na'put the new atom number in the 'old atom array MID\$(a\$, 10) = RIGHT\$(STR\$(na), 2)'replace the old atom number by the new one MID\$(a\$, 25) = STR\$(i) 'put the new position of 'amino acid 'don't forget the space PRINT #2, a\$ NEXT j, i DO 'now correct the bonds connections LINE INPUT #1, a\$ FOR c = 10 TO 25 STEP 5 'c is the number of the column

```
aa = VAL(MID\$(a\$, c, 2)) 'read old atom
                             'number
'aa is nil is there is not number in the column
IF aa <> 0 THEN 'if there is a number ...
  MID\$(a\$, c) = RIGHT\$(STR\$(naa(aa)), 2)
  'put it in the new in the place of old
  'using the old atom array
END IF
NEXT C
PRINT #2, a$
LOOP UNTIL EOF(1)
CLOSE
'number of atom (implicit H rules)
'in each amino acid
DATA 10,9,9,12,7,14,14
REM way of writing of the mol.
REM 1. glutamine
REM 2. isoleucine
REM 3. leucine
REM 4. phenylalanine
REM 5. proline
REM 6. tyrosine
REM 7. trytophan
REM put here the new
REM structure. The beginning
REM of the molecule must be
REM PXPXP and the first proline
REM must be number one.
```

DATA 7,5,6,5,4,5,2,2

Explanations

The program only changes residue and atoms numbers.

The program uses an array to know where is new number atom for an old given one.

It's useful for lines beginning by CONNECT.

When the programs read the structure (lines beginnig by ATOM), it fills the array.

Note I call old atom atom the number that the atom have in the input file and the new one the number in the output file.

So it read the old atom number. It put it in the array and it puts the new atom number instead.

To know the new atom number, the program uses a atom counter (it's in fact a line counter).

So we use naa(8)=91 means that we put the 91 (new atom number) in the positon 8 in old atom number.

So if we want to know where the new atom is we just have to look at in the table at the old atome place to have the new one.

The last line of the program is only useful to write residue number.

Once all lines beginning with ATOM have been read, the program modifies atom numbers in the connections.

In these lines there are four columns of number, at columns 10, 15, 20, 25 so it's easier to make a loop to read a line.

The program reads the old atom number in the line and in the column c.

If it's a space, the old atom number variable will have a nil value. If the ther is a number (the old atom number is not nil) the program looks at in the table and puts the new atom number instead.

The overlap with molmol

I used SelectAtom command to select atoms and Fit command to do the overlap.

The syntax of SelectAtom is

SelectAtom 'expression'

I call simple expression is the character # followed by a list of molecule names and numbers or the character followed by a list of residue names and numbers or the character @ followed by a list of atom names

If you use several simple expressions without space between you selct atom who would selcect by the two simple expression. (logical AND)

If you use several simple expressions with a space between you selct atom who would selcect by one of the two simple expression. (logical OR)

Expression	Selection
0CA	all atoms named CA
:10-20	all atoms in residues number 10 to 20
#1-3,5:10-20,25,LYS@N,CA,C	all atoms named N, CA or C in
	residues number 10 to 20 residue
	number25, and residues named LYS,
	in molecules number 1 to 3 and 5
:10@HN :17@HA	atom named HN in residue number
	10 and atom named HA in residue
	number 17

Example of expressions

My expressions

	atoms overlap	expression
a	the three proline nitrogens	#1-2:1,3,50N
b	all atoms named N, C and	#1-2:1-5@N,CA,C
	CA in the five first residues	
c	all prolines atoms and all	#1-2:1-5@N,CA,C,O,H #1-2:1,3,5
	atoms named N, C, CA, H	
	and O in the five first	
	residues	

Results (RMSD values)

molecules overlap	a	b	C
E and G	0.853	1.901	2.656
F and G	0.423	1.941	2.213
F and H	0.540	1.308	2.078

The letters refers to three kinds of overlap listed in the previous table.

Thanks

Special thanks to Dr Jaspars to have supervised my project, to Dr Marr to have receive me and to Dr De roy and Dr Fournier to have permit me to study in a Scotich laboratory in computoring chemestry.

Appendices

Appendix 1 : Molecules of my project34Appendix 2 : Amnio acid conventions38Appendix 3 : Example of a Macrodel PDB file39Appendix 4 : Example of a Molmol PDB file (extract)43Appendix 5 : Amino acid atom description table A48Appendix 6 : Amino acid IUPAC notation57Appendix 7 : Amino acid atom description table B58Appendix 8 : Basic instruction syntax61

Appendix 1 : Molecules of my project

Appendix 2	•	Amnio	acid	conventions
------------	---	-------	------	-------------

Residue (Amino acid)	three-letter code
Alanine	ALA
Arginine	ARG
Asparagine	ASN
Aspartic acid	ASP
Cysteine	CYS
Glutamine	GLN
Glutamic acid	GLU
Glycine	GLY
Histidine	HIS
Isoleucine	ILE
Leucine	LEU
Lysine	LYS
Methionine	MET
Phenylalanine	PHE
Proline	PRO
Serine	SER
Threonine	THR
Tryptophan	TRP
Tyrosine	TYR
Valine	VAL

Appendix 3 : Example of a Macrodel PDB file

COMPND	Cl	uster	ring=	=1	Rep=556	Member	rs=	795	Lead	ling=	=1 Ma	ax_Rg=3	3.01	
REMARK	1	PDB:	•	73	74	75	7	6						
REMARK	1 M	MOD:	•	73	74	75	7	6 /						
HETATM	1	N02	UNK	Α	1	-23.97	71	-24.	409	-39.	785	-0.52	-0.52	0
HETATM	2	C03	UNK	Α	1	-22.97	79	-24.	.514	-40.	842	0.25	0.25	0
HETATM	3	C04	UNK	Α	1	-23.41	14	-25.	. 374	-42.	036	0.53	0.53	0
HETATM	4	005	UNK	Α	1	-23.38	30	-26.	605	-41.	959	-0.50	-0.50	0
HETATM	5	C06	UNK	Α	1	-21.68	31	-25.	. 095	-40.	259	0.00	0.00	0
HETATM	6	C07	UNK	Α	1	-21.19	94	-24.	432	-38.	962	-0.21	-0.21	0
HETATM	7	C08	UNK	Α	1	-21.35	58	-22.	922	-38.	934	0.62	0.62	0
HETATM	8	009	UNK	Α	1	-21.66	64	-22.	. 398	-37.	844	-0.71	-0.71	0
HETATM	9	0М0	UNK	Α	1	-21.19	92	-22.	.294	-39.	996	-0.71	-0.71	0
HETATM	10	н01	UNK	Α	1	-23.58	30	-24.	.137	-38.	897	0.25	0.25	0
HETATM	11	C11	UNK	в	1	-24.24	43	-25.	473	-44.	327	0.08	0.08	0
HETATM	12	N12	UNK	в	1	-23.74	45	-24.	738	-43.	173	-0.26	-0.26	0
HETATM	13	C13	UNK	в	1	-24.36	60	-23.	415	-43.	127	0.11	0.11	0
HETATM	14	C14	UNK	в	1	-23.40)5	-22.	.271	-42.	811	0.53	0.53	0
HETATM	15	015	UNK	в	1	-23.84	47	-21.	248	-42.	302	-0.50	-0.50	0
HETATM	16	C16	UNK	в	1	-24.99	94	-23.	206	-44.	496	0.00	0.00	0
HETATM	17	C17	UNK	в	1	-25.31	17	-24.	608	-44.	974	0.04	0.04	0
HETATM	18	N19	UNK	С	1	-22.11	13	-22.	442	-43.	092	-0.52	-0.52	0
HETATM	19	C20	UNK	С	1	-21.07	78	-21.	473	-42.	761	0.21	0.21	0
HETATM	20	C21	UNK	С	1	-19.75	52	-22.	. 039	-43.	265	0.53	0.53	0
HETATM	21	022	UNK	С	1	-19.72	25	-22.	574	-44.	377	-0.50	-0.50	0
HETATM	22	C23	UNK	С	1	-21.39	99	-20.	144	-43.	461	0.04	0.04	0
HETATM	23	C24	UNK	С	1	-20.49	93	-18.	978	-43.	151	0.01	0.01	0
HETATM	24	C25	UNK	С	1	-19.45	54	-18.	628	-44.	032	-0.01	-0.01	0
HETATM	25	C26	UNK	С	1	-20.69	94	-18.	213	-41.	989	-0.01	-0.01	0
HETATM	26	C27	UNK	С	1	-18.62	25	-17.	527	-43.	754	0.00	0.00	0
HETATM	27	C28	UNK	С	1	-19.86	68	-17.	. 111	-41.	705	0.00	0.00	0
HETATM	28	C29	UNK	С	1	-18.83	32	-16.	767	-42.	590	0.00	0.00	0
HETATM	29	н18	UNK	С	1	-21.80	03	-23.	. 287	-43.	547	0.25	0.25	0
HETATM	30	C30	UNK	D	1	-17.40)9	-22.	602	-42.	850	0.08	0.08	0
HETATM	31	N31	UNK	D	1	-18.66	63	-21.	955	-42.	490	-0.26	-0.26	0
HETATM	32	C32	UNK	D	1	-18.73	30	-21.	.716	-41.	053	0.11	0.11	0
HETATM	33	C33	UNK	D	1	-18.38	33	-20.	.259	-40.	737	0.53	0.53	0
HETATM	34	034	UNK	D	1	-17.73	36	-19.	. 589	-41.	538	-0.50	-0.50	0
HETATM	35	C35	UNK	D	1	-17.69	95	-22.	676	-40.	473	0.00	0.00	0
HETATM	36	C36	UNK	D	1	-16.63	39	-22.	814	-41.	554	0.04	0.04	0
HETATM	37	N38	UNK	Е	1	-18.78	32	-19.	733	-39.	579	-0.52	-0.52	0
HETATM	38	C39	UNK	Е	1	-19.37	77	-20.	464	-38.	473	0.21	0.21	0
HETATM	39	C40	UNK	Е	1	-20.12	25	-19.	445	-37.	610	0.53	0.53	0
HETATM	40	041	UNK	Е	1	-19.69	97	-18.	292	-37.	530	-0.50	-0.50	0
HETATM	41	C42	UNK	Е	1	-18.21	17	-21.	. 098	-37.	697	0.04	0.04	0
HETATM	42	C43	UNK	Е	1	-18.54	45	-21.	995	-36.	528	0.01	0.01	0
HETATM	43	C44	UNK	Е	1	-18.94	43	-23.	. 327	-36.	739	-0.01	-0.01	0
HETATM	44	C45	UNK	Е	1	-18.41	14	-21.	522	-35.	211	-0.01	-0.01	0
HETATM	45	C46	UNK	Е	1	-19.21	18	-24.	.173	-35.	651	0.00	0.00	0
HETATM	46	C47	UNK	Е	1	-18.68	34	-22.	364	-34.	118	0.00	0.00	0

HETATM	47	C48	UNK E	1	-19.088	-23.692	-34.338	0.00	0.00	0
HETATM	48	Н37	UNK E	1	-18.630	-18.750	-39.408	0.25	0.25	0
HETATM	49	N50	UNK F	1	-21.228	-19.833	-36.971	-0.52	-0.52	0
HETATM	50	C51	UNK F	1	-21.983	8 -18.891	-36.151	0.20	0.20	0
HETATM	51	C52	UNK F	1	-23.448	-18.634	-36.558	0.53	0.53	0
HETATM	52	053	UNK F	1	-24.063	8 -17.753	-35.962	-0.50	-0.50	0
HETATM	53	C54	UNK F	1	-21.998	8 -19.267	-34.650	0.03	0.03	0
HETATM	54	C55	UNK F	1	-22.730	-20.585	-34.317	0.02	0.02	0
HETATM	55	C56	UNK F	1	-20.563	-19.248	-34.112	0.00	0.00	0
HETATM	56	C57	UNK F	1	-22.069	-21.893	-34.756	0.00	0.00	0
HETATM	57	н49	UNK F	1	-21.555	-20.788	-37.119	0.25	0.25	0
HETATM	58	N59	UNK G	1	-24.086	5 -19.304	-37.521	-0.52	-0.52	0
HETATM	59	C60	UNK G	1	-23.614	-20.376	-38.376	0.21	0.21	0
HETATM	60	C61	UNK G	1	-24.829	-21.196	-38.817	0.53	0.53	0
HETATM	61	062	UNK G	1	-25.658	-20.720	-39.592	-0.50	-0.50	0
HETATM	62	C63	UNK G	1	-22.866	5 -19.788	-39.586	0.04	0.04	0
HETATM	63	C64	UNK G	1	-23.407	-18.506	-40.185	0.01	0.01	0
HETATM	64	C65	UNK G	1	-24.342	-18.527	-41.235	-0.01	-0.01	0
HETATM	65	C66	UNK G	1	-22.957	-17.264	-39.699	-0.01	-0.01	0
HETATM	66	C67	UNK G	1	-24.823	-17.329	-41.791	0.00	0.00	0
HETATM	67	C68	UNK G	1	-23.434	-16.063	-40.250	0.00	0.00	0
HETATM	68	C69	UNK G	1	-24.369	-16.095	-41.297	0.00	0.00	0
HETATM	69	н58	UNK G	1	-25.032	-19.013	-37.711	0.25	0.25	0
HETATM	70	C70	UNK H	1	-24.456	5 -22.836	-37.004	0.08	0.08	0
HETATM	71	N71	UNK H	1	-24.984	-22.417	-38.291	-0.26	-0.26	0
HETATM	72	C72	UNK H	1	-25.947	-23.371	-38.818	0.11	0.11	0
HETATM	73	C73	UNK H	1	-25.270	-24.148	-39.951	0.53	0.53	0
HETATM	74	074	UNK H	1	-25.903	-24.453	-40.957	-0.50	-0.50	0
HETATM	75	C75	UNK H	1	-26.295	-24.268	-37.632	0.00	0.00	0
HETATM	76	C76	UNK H	1	-25.090	-24.189	-36.703	0.04	0.04	0
CONECT	1	2	10	73						
CONECT	2	1	3	5						
CONECT	3	2	12							
CONECT	3	4								
CONECT	3	4								
CONECT	4	3								
CONECT	4	3								
CONECT	5	2	6							
CONECT	6	5	7							
CONECT	7	6	9							
CONECT	7	8								
CONECT	7	8								
CONECT	8	7								
CONECT	8	7								
CONECT	9	7								
CONECT	10	1								
CONECT	11	12	17							
CONECT	12	11	13	3						
CONECT	13	12	14	16						
CONECT	14	13	18	-						
CONECT	14	15								
CONECT	14	15								
CONECT	15	14								
CONECT	15	14								
CONECT	16	13	17							
CONECT	17	11	16							
CONECT	18	19	29	14						

CONECT	19	18	20	22
CONECT	20	19	31	
CONECT	20	21		
CONECT	20	21		
CONECT	21	20		
CONECT	21	20		
CONECT	22	19	23	
CONECT	23	22	25	
CONECT	23	24		
CONECT	23	24		
CONECT	24	26		
CONECT	24	23		
CONECT	24	23		
CONECT	25	23		
CONECT	25	27		
CONECT	25	27		
CONECT	26	24		
CONECT	26	28		
CONECT	26	28		
CONECT	27	28		
CONECT	27	25		
CONECT	27	25		
CONFCT	28	23		
CONECT	20	26		
CONECT	20	20		
CONECT	20	10		
CONECT	29	21	26	
CONECT	21	30	20	20
CONECT	20	21	22	20
CONECT	22	22	22	35
CONECT	22	32	37	
CONECT	22	24		
CONECT	22	34		
CONECT	34	33		
CONECT	34	33	26	
CONECT	35	32	36	
CONECT	36	30	35	~~
CONECT	37	38	48	33
CONECT	38	37	39	41
CONECT	39	38	49	
CONECT	39	40		
CONECT	39	40		
CONECT	40	39		
CONECT	40	39		
CONECT	41	38	42	
CONECT	42	41	44	
CONECT	42	43		
CONECT	42	43		
CONECT	43	45		
CONECT	43	42		
CONECT	43	42		
CONECT	44	42		
CONECT	44	46		
CONECT	44	46		
CONECT	45	43		
CONECT	45	47		
CONECT	45	47		
CONECT	46	47		

CONECT	46	44		
CONECT	46	44		
CONECT	47	46		
CONECT	47	45		
CONECT	47	45		
CONECT	48	37		
CONECT	49	50	57	39
CONECT	50	49	51	53
CONECT	51	50	58	
CONECT	51	52		
CONECT	51	52		
CONECT	52	51		
CONECT	52	51		
CONECT	53	50	54	55
CONECT	54	53	56	
CONECT	55	53		
CONECT	56	54		
CONECT	57	49		
CONECT	58	59	69	51
CONECT	59	58	60	62
CONECT	60	59	71	
CONECT	60	61		
CONECT	60	61		
CONECT	61	60		
CONECT	61	60		
CONECT	62	59	63	
CONECT	63	62	65	
CONECT	63	64		
CONECT	63	64		
CONECT	64	66		
CONECT	64	63		
CONECT	64	63		
CONECT	65	63		
CONECT	65	67		
CONECT	65	67		
CONECT	66	64		
CONECT	66	68		
CONECT	66	68		
CONECT	67	68		
CONECT	67	65		
CONECT	67	65		
CONECT	68	67		
CONECT	68	66		
CONECT	68	66		
CONECT	69	58		
CONECT	70	71	76	
CONECT	71	70	72	60
CONECT	72	71	73	75
CONECT	73	72	1	
CONECT	73	74	_	
CONECT	73	74		
CONECT	74	73		
CONECT	74	73		
CONECT	75	72	76	
CONECT	76	70	75	
END		. •		

Appendix 4 : Example of a Molmol PDB file (extract)

```
HEADER
         PROTEINASE INHIBITOR (TRYPSIN)
                                                30-APR-92
                                                           1PIT
COMPND
         TRYPSIN INHIBITOR
SOURCE
         BOVINE (BOS TAURUS) PANCREAS
EXPDTA
         NMR
         K.D.BERNDT, P.GUNTERT, L.P.M.ORBONS, K.WUTHRICH
AUTHOR
        AUTH K.D.BERNDT, P.GUNTERT, L.P.M.ORBONS, K.WUTHRICH
JRNL
                  DETERMINATION OF A HIGH-QUALITY NUCLEAR MAGNETIC
JRNL
           TITL
           TITL 2 RESONANCE SOLUTION STRUCTURE OF THE BOVINE
JRNL
JRNL
          TITL 3 PANCREATIC TRYPSIN INHIBITOR AND COMPARISON WITH
           TITL 4 THREE CRYSTAL STRUCTURES
JRNL
           REF
                  J.MOL.BIOL.
                                               V. 227
                                                        757 1992
JRNL
           REFN
                ASTM JMOBAK UK ISSN 0022-2836
                                                                070
JRNL
REMARK 1
REMARK 1 REFERENCE 1
REMARK 1 AUTH G.WAGNER, W.BRAUN, T.F.HAVEL, T.SCHAUMANN, N.GO,
REMARK 1 AUTH 2 K.WUTHRICH
REMARK 1 TITL PROTEIN STRUCTURES IN SOLUTION BY NUCLEAR
REMARK 1 TITL 2 MAGNETIC RESONANCE AND DISTANCE GEOMETRY:
                                                           THE
REMARK 1 TITL 3 POLYPEPTIDE FOLD OF THE BASIC PANCREATIC TRYPSIN
REMARK 1 TITL 4 INHIBITOR DETERMINED USING TWO DIFFERENT
REMARK 1 TITL 5 ALGORITHMS, DISGEO AND DISMAN
REMARK 1 REF J.MOL.BIOL.
                                               V. 196
                                                        611 1987
REMARK 1 REFN ASTM JMOBAK UK ISSN 0022-2836
                                                                070
REMARK 1 REFERENCE 2
REMARK 1 AUTH G.WAGNER, K.WUTHRICH
REMARK 1 TITL SEQUENTIAL RESONANCE ASSIGNMENTS IN PROTEIN 1H
REMARK 1 TITL 2 NUCLEAR MAGNETIC RESONANCE SPECTRA. BASIC
REMARK 1 TITL 3 PANCREATIC TRYPSIN INHIBITOR
REMARK 1 REF J.MOL.BIOL.
                                               v. 155
                                                        347 1982
REMARK 1 REFN ASTM JMOBAK UK ISSN 0022-2836
                                                                070
REMARK 2
REMARK 2 RESOLUTION. NOT APPLICABLE. SEE REMARK 4.
REMARK 3
REMARK 3 REFINEMENT. NONE.
REMARK
      3
REMARK 3 THREE-DIMENSIONAL STRUCTURE IN AQUEOUS SOLUTION AS
REMARK 3 DETERMINED BY NUCLEAR MAGNETIC RESONANCE AND DISTANCE
REMARK 3 GEOMETRY. DATA WERE COLLECTED AT PH 4.6, AND A TEMPERATURE
REMARK 3 OF 36 DEGREES CELSIUS. INPUT DATA CONSISTS OF 642 UPPER
REMARK 3 DISTANCE LIMIT CONSTRAINTS FROM NOE DATA; 41 PHI, 41 PSI,
REMARK 3 AND 33 CHI1 DIHEDRAL ANGLE CONSTRAINTS; 9 UPPER AND
       3 9 LOWER DISTANCE LIMIT CONSTRAINTS TO ENFORCE THE THREE
REMARK
       3 DISULFIDE BONDS. THESE INPUT DATA ARE ALSO AVAILABLE
REMARK
       3 FROM THE PROTEIN DATA BANK. A TOTAL OF 36 STEREOSPECIFIC
REMARK
       3 PROTON RESONANCE ASSIGNMENTS WERE MADE.
REMARK
REMARK
       4
       4 THESE COORDINATES WERE GENERATED FROM SOLUTION NMR DATA.
REMARK
       4 PROTEIN DATA BANK CONVENTIONS REQUIRE THAT *CRYST1* AND
REMARK
       4 *SCALE* RECORDS BE INCLUDED, BUT THE VALUES ON THESE
REMARK
REMARK 4 RECORDS ARE MEANINGLESS.
```

REMARK 5 REMARK 5 DISTANCE GEOMETRY CALCULATIONS WERE PERFORMED WITH THE REMARK 5 PROGRAM DIANA (P.GUNTERT, W.BRAUN AND K.WUTHRICH, REMARK 5 J.MOL.BIOL. (1991) VOL. 217, 517-530). FOR THE RESTRAINED REMARK 5 ENERGY MINIMIZATION, A MODIFIED VERSION OF THE PROGRAM REMARK 5 AMBER 3.0 (U.C.SINGH, P.K.WEINER, J.W.CALDWELL, P.A.KOLLMAN, REMARK 5 UNIVERSITY OF CALIFORNIA, SAN FRANCISCO (1986)) WAS USED. REMARK 5 FOR THE PRESENT STRUCTURES, THE NMR DISTANCE CONSTRAINTS REMARK 5 WERE WEIGHTED SUCH THAT A VIOLATION OF AN UPPER DISTANCE REMARK 5 LIMIT OF 0.2 ANGSTROM CORRESPONDS TO AN ENERGY OF KT/2 AND REMARK 5 THE CONSTRAINTS ON DIHEDRAL ANGLES RESULTING FROM REMARK 5 MEASUREMENT OF VICINAL COUPLING CONSTANTS WERE WEIGHTED REMARK 5 SUCH THAT A VIOLATION OF 5 DEGREES CORRESPONDS TO AN ENERGY REMARK 5 OF KT/2. REMARK 6 REMARK 6 DEPOSITED COORDINATES ARE THOSE OF CONFORMERS 1 TO 20 OF REMARK 6 REFERENCE JRNL WHICH ARE INDICATED WITH THE KEYWORD MODEL REMARK 6 1 TO 20. THE AVERAGE VIOLATION OF THE NOE UPPER LIMIT REMARK 6 DISTANCE CONSTRAINTS DERIVED FROM NOE DATA WAS 0.005 REMARK 6 ANGSTROMS PER CONSTRAINT FOR THE 20 CONFORMERS. THE AVERAGE REMARK 6 VIOLATION OF THE DIHEDRAL ANGLE CONSTRAINTS WAS 0.05 REMARK 6 DEGREES PER CONSTRAINT FOR THE 20 CONFORMERS. THE AVERAGE REMARK 6 MAXIMAL VIOLATION OF THE NOE UPPER DISTANCE LIMITS WAS 0.22 REMARK 6 ANGSTROMS IN THE 20 CONFORMERS. THE AVERAGE MAXIMAL REMARK 6 VIOLATION OF THE DIHEDRAL ANGLE CONSTRAINTS WAS 2.2 DEGREES REMARK 6 IN THE 20 CONFORMERS. THE AVERAGE ENERGY ACCORDING TO THE REMARK 6 AMBER FORCE FIELD (S.J.WEINER, P.A.KOLLMAN, D.T.NGUYEN, REMARK 6 D.A.CASE, J.COMP.CHEM. (1986) VOL. 7, 230-252) WAS -734 REMARK 6 KCAL/MOL. 7 REMARK 7 ATOM NAMES HAVE BEEN ASSIGNED FOLLOWING THE RECOMMENDATIONS REMARK REMARK 7 OF THE IUPAC-IUB COMMISSION AS PUBLISHED IN BIOCHEMISTRY REMARK 7 (1970) VOL. 9, 3471-3479, EXCEPT THAT BACKBONE AMIDE REMARK 7 HYDROGENS ARE DENOTED BY HN INSTEAD OF H. THE INDIVIDUAL REMARK 7 NUMBERS OF THE HYDROGEN ATOMS IN METHYL AND METHYLENE REMARK 7 GROUPS ARE INDICATED AS THE FIRST CHARACTER RATHER THAN REMARK 7 THE LAST CHARACTER OF THE ATOM NAMES. REMARK 7 IN THIS FILE THE AMINO ACID RESIDUES ARE NUMBERED 7 CONSECUTIVELY FROM 1 TO 58. REMARK REMARK 8 REMARK 8 PSEUDO-ATOMS DESIGNATED AS Q ARE DIMENSIONLESS REFERENCE 8 POINTS REPRESENTING A GROUP OF HYDROGEN ATOMS. THEY ARE REMARK 8 PLACED IN THE CENTER OF THE POSITIONS OF THE HYDROGEN ATOMS REMARK REMARK 8 THEY REPRESENT. OA REPRESENTS THE TWO METHYLENE HYDROGEN REMARK 8 ATOMS OF GLY. QB, QG, ... REPRESENT BETA, GAMMA, ... REMARK 8 METHYLENE OR METHYL GROUPS IN THE SIDE CHAINS. IN CASE OF REMARK 8 BRANCHES IN THE SIDE CHAINS THE NUMBERS OF THE PSEUDO-ATOMS REMARK 8 ARE THE SAME AS THE NUMBERS OF THE CARBONS TO WHICH THE REMARK 8 HYDROGEN ATOMS ARE ATTACHED. REMARK 8 QQG AND QQD DENOTE THE PSEUDO-ATOMS FOR THE 6 HYDROGEN REMARK 8 ATOMS OF THE ISOPROPYL METHYL GROUPS OF VAL AND LEU. REMARK 8 QR IS THE PSEUDO-ATOM FOR THE DELTA AND EPSILON HYDROGENS REMARK 8 OF THE AROMATIC RINGS OF TYR AND PHE. REMARK 8 (K.WUTHRICH, M.BILLETER AND W.BRAUN, J. MOL. BIOL. (1983) REMARK 8 VOL. 169, 949-961) REMARK 9 REMARK 9 THE AVERAGE OF THE RMSD VALUES TO THE MEAN OF THE 20 NMR

REMARK 9 CONFORMERS AS DESCRIBED IN REFERENCE JRNL IS 0.43 ANGSTROMS REMARK 9 FOR THE HEAVY ATOMS OF THE BACKBONE OF RESIDUES 2-56 AND REMARK 9 THE 28 BEST-DEFINED SIDECHAINS. THE CONFORMATIONS OF THE REMARK 9 CHAIN TERMINI CONSISTING OF RESIDUES 1 AND 57-58 ARE LESS REMARK 9 WELL DETERMINED. THE AVERAGE STRUCTURAL CHANGE DURING THE REMARK 9 RESTRAINED AMBER REFINEMENT CORRESPONDS TO A RMSD OF 0.25 REMARK 9 ANGSTROMS FOR ALL HEAVY ATOMS. IN THE COLUMNS 55 TO 60 THE REMARK 9 ENTRY 1.00 IDENTIFIES THE AMINO ACID RESIDUES THAT WERE REMARK 9 USED IN THE CALCULATION OF THE GLOBAL RMSDS. FOR ALL OTHER REMARK 9 RESIDUES THE ENTRY IS 0.00. NOTE: IN THE X-RAY CRYSTAL REMARK 9 STRUCTURE FILES THESE COLUMNS CONTAIN THE OCCUPANCY VALUES. REMARK 10 REMARK 10 IN THE COLUMNS 55 TO 60 THE ENTRY 1.00 IDENTIFIES THE REMARK 10 AMINO ACID RESIDUES THAT WERE USED IN THE CALCULATION OF REMARK 10 THE GLOBAL RMSD'S. FOR ALL OTHER RESIDUES THE ENTRY IS REMARK 10 0.00. NOTE: IN THE X-RAY CRYSTAL STRUCTURE FILES THESE REMARK 10 COLUMNS CONTAIN THE OCCUPANCY VALUES. REMARK 11 REMARK 11 AVERAGES OF THE ROOT-MEAN-SQUARE DEVIATIONS IN ANGSTROMS REMARK 11 OF THE INDIVIDUAL ATOMS OF EACH CONFORMER RELATIVE TO THE REMARK 11 19 OTHER CONFORMERS ARE LISTED IN THE COLUMNS 61 TO 66 OF REMARK 11 THE ATOM RECORDS. THEY WERE OBTAINED AFTER THE BACKBONE OF REMARK 11 RESIDUES 2-56 OF THE OTHER CONFORMERS HAD BEEN OPTIMALLY REMARK 11 FIT TO THE CONFORMER FOR WHICH THE ATOMIC DEVIATION IS REMARK 11 GIVEN. NOTE: IN THE X-RAY CRYSTAL STRUCTURE FILES COLUMNS REMARK 11 61 TO 66 CONTAIN THE TEMPERATURE FACTORS. SEORES 1 58 ARG PRO ASP PHE CYS LEU GLU PRO PRO TYR THR GLY PRO 2 SEQRES 58 CYS LYS ALA ARG ILE ILE ARG TYR PHE TYR ASN ALA LYS SEQRES 3 58 ALA GLY LEU CYS GLN THR PHE VAL TYR GLY GLY CYS ARG SEQRES 4 58 ALA LYS ARG ASN ASN PHE LYS SER ALA GLU ASP CYS MET SEQRES 5 58 ARG THR CYS GLY GLY ALA 1 H1 ASP HELIX 3 GLU 7 5 ALL DONORS, ACCEPTORS INCLUDED 56 1 ALL DONORS, ACCEPTORS INCLUDED 2 H2 SER 47 GLY HELIX 1 S1 3 LEU 29 TYR 35 0 SHEET 24 -1 N ILE 2 S1 3 ILE 18 ASN SHEET O TYR 18 35 3 S1 3 PHE 45 PHE 45 -1 N PHE SHEET 45 O TYR 21 1 CYS 5 CYS 55 SSBOND 2 CYS 14 CYS SSBOND 38 3 CYS SSBOND 30 CYS 51 SSBOND 4 CYS 5 CYS 55 14 5 CYS SSBOND CYS 38 30 SSBOND 6 CYS CYS 51 CYS SSBOND 7 CYS 5 55 14 CYS SSBOND 8 CYS 38 SSBOND 9 CYS 30 CYS 51 SSBOND 10 CYS 5 55 CYS SSBOND 11 CYS 14 CYS 38 30 SSBOND 12 CYS CYS 51 SSBOND 13 CYS 5 CYS 55 SSBOND 14 CYS 14 CYS 38 30 SSBOND 15 CYS CYS 51 CYS SSBOND 16 CYS 5 55 SSBOND 17 CYS 14 CYS 38 30 SSBOND 18 CYS CYS 51 SSBOND 19 CYS 5 CYS 55 SSBOND 20 CYS 14 CYS 38 30 SSBOND 21 CYS CYS 51

SSBOND	22	CYS	5	CYS	55					
SSBOND	23	CYS	14	CYS	38					
SSBOND	24	CYS	30	CYS	51					
SSBOND	25	CYS	5	CYS	55					
SSBOND	26	CYS	14	CYS	38					
SSBOND	27	CYS	30	CYS	51					
SSBOND	28	CYS	5	CYS	55					
SSBOND	29	CYS	14	CYS	38					
SSBOND	30	CYS	30	CYS	51					
SSBOND	31	CYS	5	CYS	55					
SSBOND	32	CYS	14	CYS	38					
SSBOND	33	CYS	30	CYS	51					
SSBOND	34	CYS	5	CYS	55					
SSBOND	35	CYS	14	CYS	38					
SSBOND	36	CVS	30	CYS	51					
SSBOND	37	CVS	5	CYS	55					
SSBOND	38	CIS	14	CVS	38					
SSBOND	30	CIS	30	CVS	51					
SSBOND	10	CVG	50	CVS	55					
SSBOND	40	CIS	14	CVS	30					
SSBOND	47	CIS	20	CIS	50					
SSBOND	42	CIS	50	CIS	51					
SSBOND	43	CIS	14	CIS	30					
SSBOND	44	CIS	20	CIS	50					
SSBOND	45	CIS	50	CIS	51					
SSBOND	40	CIS	5 1 4	CIS	22					
SSBOND	4/	CIS	20	CIS	30 E1					
SSBOND	40	CIS	50	CIS	51					
SSBOND	49	CIS	5 1 4	CIS	22					
SSBOND	50	CIS	14	CIS	38					
SSBOND	51	CIS	30	CIS	51					
SSBOND	52	CIS	5	CIS	55					
SSBOND	53	CIS	14	CIS	38					
SSBOND	54	CIS	30	CIS	51					
SSBOND	55	CIS	5	CIS	55					
SSBOND	50	CIS	14	CIS	38					
SSBOND	5/	CIS	30		51	<u> </u>		D 1		-
CRISTI	Т	1 000	1.1		00 90.0	0 90.00	90.00	ΡI		Т
ORIGXI		1.000		0.000000	0.00000	0	0.00000			
ORIGX2		0.000		1.000000	0.00000	0	0.00000			
ORIGX3		0.000		0.000000	1.00000	0	0.00000			
SCALEI		1.000		0.000000	0.00000	0	0.00000			
SCALE2		0.000		1.000000	1 00000	0	0.00000			
SCALE3		0.000	1000	0.000000	1.00000	0	0.00000			
MODEL	-	1		-	0 544	2 5 7 0	14 046	0 00	0 07	
ATOM	T	N	ARG	1	-8.544	3.5/8	14.046	0.00	2.37	
ATOM	2	CA	ARG	1	-7.776	3.484	12.790	0.00	1.79	
ATOM	3	C	ARG	1	-8.492	4.333	11.742	0.00	1.59	
ATOM	4	0	ARG	1	-9.713	4.432	11.844	0.00	1.71	
ATOM	5	CB	ARG	1	-7.640	2.025	12.309	0.00	1.5/	
ATOM	6	CG	ARG	1	-8.996	1.382	11.955	0.00	2.49	
ATOM	7	CD	ARG	1	-8.875	-0.093	11.554	0.00	2.14	
ATOM	8	NE	ARG	1	-8.120	-0.280	10.303	0.00	1.94	
ATOM	9	CZ	ARG	1	-7.792	-1.484	9.802	0.00	3.00	
ATOM	10	NH1	ARG	1	-8.140	-2.588	10.477	0.00	3.63	
ATOM	11	NH2	ARG	1	-7.139	-1.609	8.640	0.00	4.23	
ATOM	12	H	ARG	1	-8.193	3.022	14.799	0.00	2.72	
ATOM	13	HA	ARG	1	-6.780	3.877	12.993	0.00	1.81	

ATOM	14	1HB	ARG	1	-6.995	2.010	11.428	0.00	1.97
ATOM	15	2HB	ARG	1	-7.148	1.441	13.089	0.00	1.67
ATOM	16	1HG	ARG	1	-9.660	1.426	12.819	0.00	3.58
АТОМ	17	2HG	ARG	1	-9.473	1.918	11.131	0.00	3.34
АТОМ	18	1HD	ARG	1	-8.402	-0.641	12.369	0.00	2.67
АТОМ	19	2HD	ARG	1	-9.887	-0.479	11.411	0.00	3.27
АТОМ	20	HE	ARG	- 1	-7 881	0 558	9 793	0 00	2 23
ATOM	21	1HH1	ARG	1	-8 653	-2 502	11 341	0 00	3 57
ATOM	22	2HH1	ARG	1	-7 954	-3 514	10 126	0 00	4 64
ATOM	23	1882	ARG	1	-6 921	-0 841	8 004	0 00	4 55
ATOM	24	2882	ARC	1	-6 870	-2 518	8 306	0.00	5 23
ATOM	25	OB	ARC	1	-7 072	1 726	12 259	0.00	1 50
ATOM	26	06	ARG	1	-9 567	1 672	11 975	0 00	3 23
ATOM	27	00	ARG	1	-9 145	-0 560	11 890	0 00	2 69
ATOM	28	ੁੁੁੁੁ 0 H 1	ARC	1	-8 304	-3 008	10 734	0.00	3 99
ATOM	29	OH2	ARC	1	-6 896	-1 679	8 155	0.00	4 81
ATOM	30	N	PRO	2	-7 785	4 939	10 781	1 00	1 36
ATOM	31	CA	PRO	2	-8 423	5 636	9 681	1 00	1 20
ATOM	32	C	PRO	2	-9 076	4 653	8 705	1 00	0 99
ATOM	22	0	PRO	2	-8 809	3 451	8 734	1 00	1 08
ATOM	34	CB	PRO	2	-7 326	6 451	8 997	1 00	1 19
ATOM	35	CG	PRO	2	-6 002	5 839	9 465	1 00	1 26
ATOM	36	CD	PRO	2	-6 338	5 014	10 708	1 00	1 37
ATOM	37	на	DPO	2	-9 189	6 315	10.062	1 00	1 32
ATOM	38	14B	DRO	2	-7 420	6 411	7 912	1 00	1 04
ATOM	20	2HB	PRO	2	-7 394	7 491	9 312	1 00	1 37
ATOM	40	211D 1 HC	DRO	2	-5 595	5 206	8 677	1 00	1 16
ATOM	41	280	DRO	2	-5 276	6 613	9 713	1 00	1 40
ATOM	12	1 HD	DPO	2	-5 903	4 019	10 633	1 00	1 20
ATOM	13	2HD	DRO	2	-5 944	5 525	11 587	1 00	1 60
ATOM	40	OB	PRO	2	-7 407	6 951	8 612	1 00	1 19
ATOM	45	0G ØD	PRO	2	-5 436	5 910	9 1 9 5	1 00	1 28
ATOM	46	00	PRO	2	-5 924	4 772	11 110	1 00	1 44
АТОМ	47	N N	ASP	- 3	-9 901	5 213	7 821	1 00	0 81
ATOM	48	CA	ASP	3	-10537	4 606	6 666	1 00	0 70
ATOM	49	C	ASP	3	-9 492	4 188	5 635	1 00	0 47
ATOM	50	0	ASP	3	-9 551	3 094	5 075	1 00	0.44
ATOM	51	CB	ASP	3	-11,475	5.657	6.043	1.00	0.84
АТОМ	52	20	ASP	3	-10 718	6 888	5 535	1 00	2 69
АТОМ	53	OD1	ASP	3	-9.785	7.311	6.262	1.00	3.89
АТОМ	54	OD2	ASP	3	-11.014	7.332	4.408	1.00	3.84
АТОМ	55	н	ASP	3	-9.936	6.228	7.778	1.00	0.79
ATOM	56	HA	ASP	3	-11.099	3.731	6.987	1.00	0.98
ATOM	57	1HB	ASP	3	-11.999	5.202	5.202	1.00	1.88
ATOM	58	2HB	ASP	3	-12.214	5.975	6.779	1.00	1.50
ATOM	59	QB	ASP	3	-12.107	5.589	5.991	1.00	0.99
ATOM	60	Ñ	PHE	4	-8.511	5.055	5.386	1.00	0.50
ATOM	61	CA	PHE	4	-7.520	4.803	4.349	1.00	0.58
ATOM	62	С	PHE	4	-6.738	3.520	4.651	1.00	0.54
ATOM	63	ο	PHE	4	-6.261	2.838	3.747	1.00	0.59
ATOM	64	СВ	PHE	4	-6.634	6.035	4.141	1.00	0.83
ATOM	65	CG	PHE	4	-5.598	6.301	5.215	1.00	0.99
ATOM	66	CD1	PHE	4	-4.460	5.477	5.302	1.00	1.15
ATOM	67	CD2	PHE	4	-5.738	7.389	6.096	1.00	1.06
ATOM	68	CE1	PHE	4	-3.560	5.631	6.368	1.00	1.36
ATOM	69	CE2	PHE	4	-4.785	7.597	7.109	1.00	1.28
ATOM	70	CZ	PHE	4	-3.733	6.682	7.282	1.00	1.43

Appendix 5 : Amino acid atom description table A

(Table extract from)

Please note that some atoms are in the wrong order. You must check in a correct PDB file the true order. I used this table to fin thryptophian information data (I not sur the hydrogens order in my program, I did like tyrose), and you can notice that the first four atom are not N, C, CA, O as they should be.

Amino	IUPAC	Stereoisomeric	PDB notation
acid	notation	information	
ALA	Н		Н
ALA	HA		HA
ALA	HB1		1HB
ALA	HB2		2HB
ALA	HB3		3HB
ALA	С		С
ALA	CA		CA
ALA	CB		CB
ALA	Ν		Ν
ALA	0		0
ARG	Н		Н
ARG	HA		HA
ARG	HB2	(pro-R)	2HB
ARG	HB3	(pro-S)	3HB
ARG	HG2	(pro-S)	2HG
ARG	HG3	(pro-R)	3HG
ARG	HD2	(pro-S)	2HD
ARG	HD3	(pro-R)	3HD
ARG	HE		HE
ARG	HH11	(Z)	1HH1
ARG	HH12	(E)	2HH1
ARG	HH21	(Z)	1HH2
ARG	HH22	(E)	2HH2
ARG	C		С
ARG	CA		CA
ARG	CB		CB

ARG	CG		CG
ARG	CD		CD
ARG	CZ		CZ
ARG	Ν		Ν
ARG	NE		NE
ARG	NH1	(Z)	NH1
ARG	NH2	(E)	NH2
ARG	0		0
ASP	Н		Н
ASP	HA		HA
ASP	HB2	(pro-S)	2HB
ASP	HB3	(pro-R)	3HB
ASP	HD2		HD2
ASP	С		С
ASP	CA		CA
ASP	CB		CB
ASP	CG		CG
ASP	Ν		Ν
ASP	0		0
ASP	OD1		OD1
ASP	OD2		OD2
ASN	Н		Н
ASN	HA		HA
ASN	HB2	(pro-S)	2HB
ASN	HB3	(pro-R)	3HB
ASN	HD21	(E)	1HD2
ASN	HD22	(Z)	2HD2
ASN	C		С
ASN	CA		CA
ASN	CB		CB
ASN	CG		CG
ASN	Ν		Ν
ASN	ND2		ND2
ASN	0		0
ASN	OD1		OD1
CYS	Н		Н
CYS	HA		HA
CYS	HB2	(pro-S)	2HB
CYS	HB3	(pro-R)	3HB
CYS	HG		HG

CYS	С		С
CYS	CA		CA
CYS	CB		CB
CYS	Ν		Ν
CYS	0		0
CYS	SG		SG
GLU	Н		Н
GLU	HA		HA
GLU	HB2	(pro-R)	2HB
GLU	HB3	(pro-S)	3HB
GLU	HG2	(pro-S)	2HG
GLU	HG3	(pro-R)	3HG
GLU	HE2		HE2
GLU	С		С
GLU	CA		CA
GLU	CB		CB
GLU	CG		CG
GLU	CD		CD
GLU	Ν		Ν
GLU	0		0
GLU	OE1		OE1
GLU	OE2		OE2
GLN	Н		Н
GLN	HA		HA
GLN	HB2	(pro-R)	2HB
GLN	HB3	(pro-S)	3HB
GLN	HG2	(pro-S)	2HG
GLN	HG3	(pro-R)	3HG
GLN	HE21	(E)	1HE2
GLN	HE22	(Z)	2HE2
GLN	С		С
GLN	CA		CA
GLN	CB		CB
GLN	CG		CG
GLN	CD		CD
GLN	Ν		Ν
GLN	NE2		NE2
GLN	0		0
GLN	OE1		OE1
GLY	Н		Н

GLY	HA2	(pro-R)	2HA
GLY	HA3	(pro-S)	3HA
GLY	C		С
GLY	CA		CA
GLY	Ν		Ν
GLY	0		0
HIS	Н		Н
HIS	HA		HA
HIS	HB2	(pro-S)	2HB
HIS	HB3	(pro-R)	3HB
HIS	HD1		HD1
HIS	HD2		HD2
HIS	HE1		HE1
HIS	HE2		HE2
HIS	С		С
HIS	CA		CA
HIS	CB		CB
HIS	CG		CG
HIS	CD2		CD2
HIS	CE1		CE1
HIS	Ν		Ν
HIS	ND1		ND1
HIS	NE2		NE2
HIS	0		0
ILE	Н		Н
ILE	HA		HA
ILE	HB		HB
ILE	HG12	(pro-R)	2HG1
ILE	HG13	(pro-S)	3HG1
ILE	HG21		1HG2
ILE	HG22		2HG2
ILE	HG23		3HG2
ILE	HD11		1HD1
ILE	HD12		2HD1
ILE	HD13		3HD1
ILE	C		С
ILE	CA		CA
ILE	CB		CB
ILE	CG1		CG1
ILE	CG2		CG2

ILE	CD1		CD1
ILE	Ν		Ν
ILE	0		0
LEU	Н		Н
LEU	HA		HA
LEU	HB2	(pro-R)	2HB
LEU	HB3	(pro-S)	3HB
LEU	HG		HG
LEU	HD11		1HD1
LEU	HD12		2HD1
LEU	HD13		3HD1
LEU	HD21		1HD2
LEU	HD22		2HD2
LEU	HD23		3HD2
LEU	С		С
LEU	CA		CA
LEU	CB		CB
LEU	CG		CG
LEU	CD1	(pro-R)	CD1
LEU	CD2	(pro-S)	CD2
LEU	Ν		Ν
LEU	0		0
LYS	Н		Н
LYS	HA		HA
LYS	HB2	(pro-R)	2HB
LYS	HB3	(pro-S)	3HB
LYS	HG2	(pro-R)	2HG
LYS	HG3	(pro-S)	3HG
LYS	HD2	(pro-S)	2HD
LYS	HD3	(pro-R)	3HD
LYS	HE2	(pro-S)	2HE
LYS	HE3	(pro-R)	3HE
LYS	HZ1	-	1HZ
LYS	HZ2		2HZ
LYS	HZ3		3HZ
LYS	С		С
LYS	CA		CA
LYS	CB		CB
LYS	CG		CG
LYS	CD		CD

LYS	CE		CE
LYS	Ν		Ν
LYS	NZ		NZ
LYS	0		0
MET	Н		Н
MET	HA		HA
MET	HB2	(pro-S)	2HB
MET	HB3	(pro-R)	3HB
MET	HG2	(pro-S)	2HG
MET	HG3	(pro-R)	3HG
MET	HE1		1HE
MET	HE2		2HE
MET	HE3		3HE
MET	C		С
MET	CA		CA
MET	CB		CB
MET	CG		CG
MET	CE		CE
MET	Ν		Ν
MET	0		0
MET	SD		SD
PHE	Н		Н
PHE	HA		HA
PHE	HB2	(pro-R)	1HB
PHE	HB3	(pro-S)	2HB
PHE	HD1		HD1
PHE	HD2		HD2
PHE	HE1		HE1
PHE	HE2		HE2
PHE	HZ		HZ
PHE	C		С
PHE	CA		CA
PHE	CB		CB
PHE	CG		CG
PHE	CD1		CD1
PHE	CD2		CD2
PHE	CE1		CE1
PHE	CE2		CE2
PHE	CZ		CZ
PHE	N		Ν

PHE	0		Ο
PRO	H2	(pro-R)	H2
PRO	H3	(pro-S)	H3
PRO	HA		HA
PRO	HB2	(pro-R)	2HB
PRO	HB3	(pro-S)	3HB
PRO	HG2	(pro-S)	2HG
PRO	HG3	(pro-R)	3HG
PRO	HD2	(pro-S)	2HD
PRO	HD3	(pro-R)	3HD
PRO	С	_	С
PRO	CA		CA
PRO	CB		CB
PRO	CG		CG
PRO	CD		CD
PRO	Ν		Ν
PRO	0		0
SER	Н		Н
SER	HA		HA
SER	HB2	(pro-S)	2HB
SER	HB3	(pro-R)	3HB
SER	HG	_	HG
SER	С		С
SER	CA		CA
SER	CB		CB
SER	Ν		Ν
SER	0		0
SER	OG		OG
THR	Н		Н
THR	HA		HA
THR	HB		HB
THR	HG1		HG1
THR	HG21		1HG2
THR	HG22		2HG2
THR	HG23		3HG2
THR	C		С
THR	CA		CA
THR	CB		CB
THR	CG2		CG2
THR	Ν		Ν

THR	0		0
THR	OG1		OG1
TRP	Н		Н
TRP	HA		HA
TRP	HB2	(pro-R)	2HB
TRP	HB3	(pro-S)	3HB
TRP	HD1		HD1
TRP	HE1		HE1
TRP	HE3		HE3
TRP	HZ2		HZ2
TRP	HZ3		HZ3
TRP	HH2		HH2
TRP	C		С
TRP	CA		CA
TRP	CB		CB
TRP	CG		CG
TRP	CD1		CD1
TRP	CD2		CD2
TRP	CE2		CE2
TRP	CE3		CE3
TRP	CZ2		CZ2
TRP	CZ3		CZ3
TRP	CH2		CH2
TRP	Ν		Ν
TRP	NE1		NE1
TRP	0		0
TYR	Н		Н
TYR	HA		HA
TYR	HB2	(pro-R)	2HB
TYR	HB3	(pro-S)	3HB
TYR	HD1		HD1
TYR	HD2		HD2
TYR	HE1		HE1
TYR	HE2		HE2
TYR	HH		HH
TYR	C		С
TYR	CA		CA
TYR	CB		CB
TYR	CG		CG
TYR	CD1		CD1

TYR	CD2		CD2
TYR	CE1		CE1
TYR	CE2		CE2
TYR	CZ		CZ
TYR	Ν		Ν
TYR	0		0
TYR	OH		OH
VAL	Н		Н
VAL	HA		HA
VAL	HB		HB
VAL	HG11		1HG1
VAL	HG12		2HG1
VAL	HG13		3HG1
VAL	HG21		1HG2
VAL	HG22		2HG2
VAL	HG23		3HG2
VAL	С		С
VAL	CA		CA
VAL	CB		СВ
VAL	CG1	(pro-R)	CG1
VAL	CG2	(pro-S)	CG2
VAL	Ν		Ν
VAL	Ο		0

Appendix 6 : Amino acid IUPAC notation

Appendix 7 : Amino acid atom description table B

(Table extract from 1pit.pdb file)

This file was supplied with Molmol. As it is Molmol example file, Molmol reads it.

So I used this table until I found another better. It's in fact part of the file, it's a big proteine description, the differents amino acids occurs often, I extracted the information when they appear for the first time in the file.

Note there is a difference in proline description order with Molmol PDB file. I assumed that the first carbon (before the nitrogen) was the CD but I'm not sure of this.

ATOM	30	N	PRO	2	-7.785	4.939	10.781	1.00	1.36
ATOM	31	CA	PRO	2	-8.423	5.636	9.681	1.00	1.20
ATOM	32	С	PRO	2	-9.076	4.653	8.705	1.00	0.99
ATOM	33	0	PRO	2	-8.809	3.451	8.734	1.00	1.08
ATOM	34	CB	PRO	2	-7.326	6.451	8.997	1.00	1.19
ATOM	35	CG	PRO	2	-6.002	5.839	9.465	1.00	1.26
ATOM	36	CD	PRO	2	-6.338	5.014	10.708	1.00	1.37
ATOM	37	HA	PRO	2	-9.189	6.315	10.062	1.00	1.32
ATOM	38	1HB	PRO	2	-7.420	6.411	7.912	1.00	1.04
ATOM	39	2HB	PRO	2	-7.394	7.491	9.312	1.00	1.37
ATOM	40	1HG	PRO	2	-5.595	5.206	8.677	1.00	1.16
ATOM	41	2HG	PRO	2	-5.276	6.613	9.713	1.00	1.40
ATOM	42	1HD	PRO	2	-5.903	4.019	10.633	1.00	1.29
ATOM	43	2HD	PRO	2	-5.944	5.525	11.587	1.00	1.60
ATOM	44	QB	PRO	2	-7.407	6.951	8.612	1.00	1.19
ATOM	45	QG	PRO	2	-5.436	5.910	9.195	1.00	1.28
ATOM	46	QD	PRO	2	-5.924	4.772	11.110	1.00	1.44
ATOM	60	N	PHE	4	-8.511	5.055	5.386	1.00	0.50
ATOM	61	CA	PHE	4	-7.520	4.803	4.349	1.00	0.58
ATOM	62	С	PHE	4	-6.738	3.520	4.651	1.00	0.54
ATOM	63	0	PHE	4	-6.261	2.838	3.747	1.00	0.59
ATOM	64	CB	PHE	4	-6.634	6.035	4.141	1.00	0.83
ATOM	65	CG	PHE	4	-5.598	6.301	5.215	1.00	0.99
ATOM	66	CD1	PHE	4	-4.460	5.477	5.302	1.00	1.15
ATOM	67	CD2	PHE	4	-5.738	7.389	6.096	1.00	1.06
ATOM	68	CE1	PHE	4	-3.560	5.631	6.368	1.00	1.36
ATOM	69	CE2	PHE	4	-4.785	7.597	7.109	1.00	1.28
ATOM	70	CZ	PHE	4	-3.733	6.682	7.282	1.00	1.43
ATOM	71	н	PHE	4	-8.582	5.967	5.843	1.00	0.59
ATOM	72	HA	PHE	4	-8.061	4.644	3.413	1.00	0.63
ATOM	73	1HB	PHE	4	-6.115	5.888	3.195	1.00	0.97
ATOM	74	2HB	PHE	4	-7.291	6.899	4.040	1.00	0.85
ATOM	75	HD1	PHE	4	-4.299	4.684	4.585	1.00	1.15

ATOM	76	HD2	PHE	4	-6.606	8.034	6.044	1.00	0.98
ATOM	77	HE1	PHE	4	-2.758	4.922	6.499	1.00	1.53
ATOM	78	HE2	PHE	4	-4.915	8.405	7.815	1.00	1.36
ATOM	79	HZ	PHE	4	-3.104	6.739	8.159	1.00	1.63
ATOM	80	QВ	PHE	4	-6.703	6.394	3.618	1.00	0.90
ATOM	81	QR	PHE	4	-4.645	6.512	6.236	1.00	1.21
ATOM	93	N	LEU	6	-7.870	0.824	5.047	1.00	0.38
ATOM	94	CA	LEU	6	-8.700	-0.238	4.492	1.00	0.47
ATOM	95	С	LEU	6	-8.865	-0.089	2.962	1.00	0.51
ATOM	96	0	LEU	6	-9.617	-0.859	2.365	1.00	0.66
ATOM	97	СВ	LEU	6	-10.067	-0.223	5.211	1.00	0.56
ATOM	98	CG	LEU	6	-9.972	-0.264	6.755	1.00	0.57
ATOM	99	CD1	LEU	6	-10.554	0.995	7.396	1.00	0.68
ATOM	100	CD2	LEU	6	-10.651	-1.499	7.345	1.00	0.65
ATOM	101	н	LEU	6	-8.215	1.764	4.879	1.00	0.48
ATOM	102	HA	LEU	6	-8.234	-1.209	4.666	1.00	0.55
ATOM	103	1HB	LEU	6	-10.606	0.675	4.909	1.00	0.56
ATOM	104	2HB	LEU	6	-10.647	-1.079	4.865	1.00	0.74
ATOM	105	HG	LEU	6	-8.939	-0.299	7.072	1.00	0.60
АТОМ	106	1HD1	T.EU	6	-11.560	1,187	7.024	1.00	1.94
АТОМ	107	2HD1	T.EU	6	-10.578	0.902	8.482	1.00	1.65
АТОМ	108	3HD1	T.EU	6	-9.903	1.826	7,143	1.00	1.41
АТОМ	109	1HD2	LEU	6	-10,292	-2.387	6.833	1.00	1.67
ATOM	110	2802	LEU	6	-10 410	-1 579	8 406	1 00	1 07
атом	111	3802	LEU	6	-11 729	-1 424	7 221	1 00	1 67
атом	112	OB		6	-10 627	-0 202	1 887	1 00	0 63
атом	113	ם <u>ס</u> 1חס		6	-10 680	1 305	7 550	1 00	0.05
ATOM	114		тепт	6	_10 810	-1 796	7.330	1 00	0.72
ATOM	115			6		-0.245	7.407	1 00	0.03
ATOM	116	N N		8	-10.743	-0.245	2 216	1.00	0.04
ATOM	117		CTI	7	-0.102	1 029	2.310	1.00	0.47
ATOM	110	CA	CTI	7	-0.200	-0.242	0.855	1.00	0.52
ATOM	110		CTI	7	-7.055	-0.242	0.104	1.00	0.40
ATOM	120		GTO	7	-0.0/9	-0.979	0.778	1.00	0.00
ATOM	120	CB	GLU	7	-7.355	2.257	0.447	1.00	0.69
ATOM	121		GLU	7	-8.159	3.487	0.003	1.00	1.58
ATOM	122		GLU	7	-7.277	4.706	-0.280	1.00	1.00
ATOM	123	OFI	GLU	7	-0.092	5.235	0.691	1.00	2.30
ATOM	124	OE2	GLU	7	-7.211	5.114	-1.462	1.00	2.05
ATOM	125	H	GLU	7	-7.556	1.4/1	2.843	1.00	0.44
ATOM	120		GLU	7	-9.236	1.183	0.547	1.00	0.74
ATOM	127	THR	GLU	7	-6.777	2.589	1.302	1.00	1.99
ATOM	128	ZHB	GLU	7	-6.661	1.976	-0.346	1.00	1.99
ATOM	129	IHG	GLU	/	-8.745	3.259	-0.886	1.00	2.88
ATOM	130	2HG	GLU	7	-8.829	3.749	0.814	1.00	2.83
ATOM	131	QB	GLU	7	-6.719	2.283	0.478	1.00	1.45
ATOM	132	QG	GLU	1	-8./8/	3.504	-0.036	1.00	2.4/
ATOM	167	N	TYR	10	-4.346	-0.035	-5.128	1.00	0.56
ATOM	168	CA	TYR	10	-4.479	0.631	-6.417	1.00	0.60
ATOM	169	C	TYR	10	-3.121	0.838	-7.111	1.00	0.64
ATOM	170	0	TYR	10	-2.390	1.782	-6.823	1.00	0.80
ATOM	171	CB	TYR	10	-5.226	1.951	-6.225	1.00	0.64
ATOM	172	CG	TYR	10	-5.704	2.573	-7.520	1.00	0.99
ATOM	173	CD1	TYR	10	-6.790	1.997	-8.206	1.00	1.67
ATOM	174	CD2	TYR	10	-5.072	3.715	-8.043	1.00	1.06
ATOM	175	CE1	TYR	10	-7.242	2.559	-9.411	1.00	2.21
ATOM	176	CE2	TYR	10	-5.564	4.310	-9.218	1.00	1.54
ATOM	177	CZ	TYR	10	-6.629	3.718	-9.917	1.00	2.08

ATOM	178	OH	TYR	10	-7.059	4.274	-11.084	1.00	2.65
ATOM	179	н	TYR	10	-4.411	0.520	-4.282	1.00	0.64
АТОМ	180	HA	TYR	10	-5.105	0.001	-7.052	1.00	0.64
АТОМ	181	1HB	TYR	10	-6.101	1.767	-5.599	1.00	0.73
ATOM	182	2HB	TYR	10	-4 572	2 641	-5 695	1 00	0 76
ATOM	183	но1	TYP	10	-7 275	1 115	-7 811	1 00	1 89
ATOM	101		TIN	10	_1 209	4 1 2 0	-7 550	1 00	1 00
ATOM	104		TIK	10	-4.200	4.130	-7.330	1 00	2 01
ATOM	100		TIR	10	-8.065	2.090	-9.937	1.00	2.01
ATOM	107	HEZ	TIR	10	-5.089	5.194	-9.614	1.00	1.69
ATOM	187	нн	TYR	10	-/./86	3.791	-11.484	1.00	3.19
ATOM	188	QВ	TYR	10	-5.337	2.204	-5.647	1.00	0.64
ATOM	189	QR	TYR	10	-6.159	3.136	-8.728	1.00	1.51
ATOM	308	N	ILE	18	6.444	-2.052	-9.552	1.00	0.61
ATOM	309	CA	ILE	18	7.301	-1.612	-8.466	1.00	0.62
ATOM	310	С	ILE	18	6.768	-2.279	-7.202	1.00	0.52
ATOM	311	0	ILE	18	5.615	-2.063	-6.845	1.00	0.46
ATOM	312	CB	ILE	18	7.222	-0.075	-8.340	1.00	0.63
ATOM	313	CG1	ILE	18	7.582	0.606	-9.671	1.00	0.71
ATOM	314	CG2	ILE	18	8.134	0.430	-7.214	1.00	0.66
ATOM	315	CD1	ILE	18	7.572	2.136	-9.579	1.00	0.72
ATOM	316	н	ILE	18	5.449	-1.921	-9.408	1.00	0.72
ATOM	317	HA	ILE	18	8.335	-1.914	-8.642	1.00	0.69
ATOM	318	HB	ILE	18	6.196	0.200	-8.091	1.00	0.57
ATOM	319	1HG1	ILE	18	8.563	0.268	-10.002	1.00	0.80
АТОМ	320	2HG1	TLE	18	6.845	0.324	-10.421	1.00	0.82
ATOM	321	1HG2	TLE	18	7 974	-0 136	-6 298	1 00	1 56
ATOM	322	2862	TLE	18	9 178	0.230	-7 514	1 00	1 86
ATOM	323	3862	TLF	18	7 904	1 474	-7 001	1 00	1 31
ATOM	227	1 001		10	6 6 4 1	2 472	-0 122	1 00	1 57
ATOM	224		115 115	10	0.041	2.4/2	-9.122	1 00	1 40
ATOM	325		115	10	0.419	2.490	-0.992	1.00	1.49
ATOM	320	3HD1	115	18	7.646	2.557	-10.582	1.00	1.76
ATOM	327	QGT	115	18	7.704	0.296	-10.211	1.00	0.78
ATOM	328	QG2	TTR	18	8.352	0.559	-6.937	1.00	0.6/
ATOM	329	QD1	ILE	18	7.569	2.507	-9.565	1.00	0.74
ATOM	330	N	ILE	19	7.577	-3.085	-6.516	1.00	0.51
ATOM	331	CA	ILE	19	7.174	-3.654	-5.240	1.00	0.42
ATOM	332	С	ILE	19	6.969	-2.504	-4.243	1.00	0.41
ATOM	333	0	ILE	19	7.883	-1.711	-4.011	1.00	0.52
ATOM	334	СВ	ILE	19	8.215	-4.680	-4.749	1.00	0.46
ATOM	335	CG1	ILE	19	8.571	-5.744	-5.809	1.00	0.50
ATOM	336	CG2	ILE	19	7.736	-5.355	-3.455	1.00	0.46
ATOM	337	CD1	ILE	19	7.423	-6.688	-6.188	1.00	0.50
ATOM	338	н	ILE	19	8.515	-3.248	-6.839	1.00	0.57
ATOM	339	HA	ILE	19	6.225	-4.167	-5.383	1.00	0.39
ATOM	340	HB	ILE	19	9.134	-4.137	-4.525	1.00	0.49
ATOM	341	1HG1	ILE	19	8.926	-5.256	-6.717	1.00	0.57
ATOM	342	2HG1	ILE	19	9.393	-6.353	-5.430	1.00	0.56
АТОМ	343	1HG2	ILE	19	7.574	-4.611	-2.674	1.00	1.35
ATOM	344	2HG2	ILE	19	6 802	-5.890	-3,627	1.00	1.76
ATOM	345	3862	TLE	19	8 494	-6.058	-3,106	1.00	1.71
ATOM	346	1HD1	TLE	19	6 493	-6 144	-6 330	1 00	1 22
ATOM	3/7	2001		10	7 679	_7 200	-7 116	1 00	1 70
ATOM ATOM	310	2001	ᅚᅚᇛ	10	7.070	-7 127	-5 400	1 00	1 61
ATOM ATOM	240	001	ᅚᅭᇛ	10	1.202	-1.43/	-6 072	1 00	1.04 0 EE
ATOM	249	QG1	ᅚᅚᅓ	19	9.109	-5.804	-0.0/3	1 00	0.55
ATOM	350	QG2	ᆂᅭᄣ	19	7.623	-2.519	-3.135	1.00	0.40
MOTA	351	QD1	ТГЕ	т9	1.151	-6.927	-6.287	T.00	0.52

Appendix 8 : Basic instruction syntax CLOSE

Closes one or more open files or devices.

CLOSE [[#]filenumber%[,[#]filenumber%]...]

- **filenumber%** The number of an open file or device.
- CLOSE with no arguments closes all open files and devices.

DATA

DATA specifies values to be read by subsequent READ statements.

DATA constant[,constant]...

• constant One or more numeric or string constants specifying the data to be read. String constants containing commas, colons, or leading or trailing spaces are enclosed in quotation marks (" ").

DIM

DIM declares an array or specifies a data type for a nonarray variable.

DIM variable[(subscripts)] [AS type] [,variable[(subscripts)] [AS type]]...

- variable The name of an array or variable.
- subscripts Dimensions of the array, expressed as follows:

[lower TO] upper [,[lower TO] upper]...

61

- lower The lower bound of the array's subscripts. The default lower bound is zero.
- **upper** The upper bound.
- AS type Declares the data type of the array or variable (INTEGER, LONG, SINGLE, DOUBLE, STRING, or a user-defined data type).

DO

Repeats a block of statements while a condition is true or until a condition becomes true.

DO [{WHILE | UNTIL} condition] [statementblock] LOOP

DO

[statementblock] LOOP [{WHILE | UNTIL} condition]

• condition A numeric expression that Basic evaluates as true (nonzero) or false (zero).

END IF

(see IF)

FOR

Repeats a block of statements a specified number of times. (The loop begins by FOR and ends by NEXT)

FOR counter = start TO end [STEP increment]
[statementblock]
NEXT [counter [,counter]...]

• counter	A numeric variable used as the loop counter.
• start and end	The initial and final values of the counter.

• increment The amount the counter is changed each time through the loop.

IF

Executes a statement or statement block depending on specified conditions.

IF condition1 THEN [statementblock] END IF

IF condition THEN statements [ELSE statements]

- condition Any expression that can be evaluated as
- statementblock One or more statements on one or more lines.

LINE INPUT

LINE INPUT reads a line of up to 255 characters from a file. LINE INPUT reads all characters up to a carriage return.

LINE INPUT #filenumber%, variable\$

- variable\$ Holds a line of characters or read from a file.
- filenumber% The number of an open file.

$\frac{\mathbf{LOOP}}{(\mathbf{SAP} \mathbf{DO})}$

(see DO)

MID\$

MID\$ replaces part of a string variable with another string.

MID\$(stringvariable\$, start%) = stringexpression\$

• stringexpression\$	The string from which the MID\$ function returns a substring, or the replacement string used by the MID\$ statement. It can be any string expression.
• start%	The position of the first character in the substring being returned or replaced.
• stringvariable\$	The string variable being modified by the MID\$ statement.

MID\$ (function)

MID\$ function returns part of a string (a substring).

MID\$(stringexpression\$,start%[,length%])

 stringexpression\$ 	The string from which the MID\$ function returns a substring, or the replacement string used by the MID\$ statement. It can be any string expression.
• start%	The position of the first character in the substring being returned or replaced.
• length%	The number of characters in the substring. If the length is omitted, MID\$ returns or replaces all characters to the right of the start position.

NEXT

(see FOR)

OPEN

OPEN mode2\$,[#]filenum%,file\$[,reclen%]

mode2\$ A string expression that begins with one of the following characters and specifies the file mode:
 O Sequential output mode.
 I Sequential input mode.

• filenum%	A number in the range 1 through 255 that
	identifies the file while it is open.
• file\$	The name of the file (may include drive and path).

PRINT

PRINT writes data to a file.

PRINT #filenumber%, expressionlist

• filenumber%	The number of an open file. If you don't specify a
	file number, PRINT writes to the screen.
• expressionlist	A list of one or more numeric or string expressions
	to print.

READ

READ reads those values and assigns them to variables.

READ variablelist

• variablelist	One or more variables, separated by commas, that
	are assigned data values.

REM

Allows explanatory remarks to be inserted in a program.

REM remark ' remark

RIGHT\$ (function)

Return a specified number of rightmost characters in a string.

RIGHT\$(stringexpression\$,n%)

stringexpression\$ Any string expression.
 n% The number of characters to return, beginning with the rightmost string character.

STR\$ (function)

STR\$ returns a string representation of a number.

STR\$(numeric-expression)

• numeric-expression Any numeric expression.

THEN

(see IF)

VAL (function)

VAL converts a string representation of a number to a number.

VAL(stringexpression\$)

• stringexpression\$ A string representation of a number. (return 0 if the string isn't a represation of a number)